

) Overview

Files o

Shell Configuration Files

* Shell configuration files are scripts that are run when you
log in, log out, or start a new shell

- /etc/profile belongs to the root user and is the first start-up
file that executes when you log in, regardless of shell

. K“User-specific config files are in the user's home directory:
~/.bash_profile runs when you log in

~/.bashrc runs when you start an interactive subshell
~/.bash_logout runs when you log out

« The start-up files can be used, for example, to:
Set the prompt and screen display

Create local variables
Create temporary Linux commands (aliases)

Il Variables

are cla§éified in 2 groups
| 'variabl-és, describing the working

od varlables associated with scripts
,can Qé read/write or read- -only

me varlable can be any sequence of
. agg_.mbers but it must not start with a

hell Variables

variables shape the working
enever you are logged in
ariables include:

mary prompt

present working directory

absolute path to user's home

.ﬁ ame of the user logged in
~ —current shell

command will display all available variables

-ATH variable

\ment variable present in Unix/Linux
18, listing directories where executable

an customize a default PATH

shel 'arches,;the“sé directories whenever a command is
ed in the sequence listed

T
...........

2 of multiple matches use the which utility to determine
ch match has a precedence

ne systems the present working directory may not be
uded in the PATH by default

" prefix or modify the PATH as needed

ning a Value

able \ alues are to contain spaces or tabs
ould be surrounded by quotes

o :h phone=" 1 800 123-4567"

4 Read-Only Variables

- Including the keyword readonly before the
command assignment prevents you from
. changing the variable afterwards
. For example: readonly phone="123-4567"

» After a variable is set, it can be protected from

hanging by using the readonly command
1ax: readonly variable

\X_ample: readonly phone

o variable name is supplied a list of defined
read only variables will be displayed

r “t
B

ng Variables

0 out for them to be cleared

u wish,.-:t'b use the value of a
- contents), use the variable
eded by a dollar sign ($)

 Introduction to Shell Scripting

~+ Shell programming
- Scope ranges from simple day-to-day tasks to large database-
S driven CGl applications
.+ Shell-dependent — each shell script is written for a specific
h sh‘ell 'such as bash

i'---Flrst line of each script can specify the path to the
rogram which executes the script - #! statement, for
nple: #! /bin/bash

e the which utility to find out path to use: which bash

s must be the first line and nothing can precede it, not even
_a single space

- This line is not necessary if the script will be executed in the
- default shell of the user
~ Any line other than first one starting with a # is treated as a
comment

onal Parameters

can have parameters supplied
ne parameters are referred to

m _rs > $9 can be accessed by using the
ift command

" - shift will literally shift parameters to the

~ left by one or more positions

an also use the ${} form

is enables direct access to parameters >$9
-or example: ${10}

1al Parameters
esent all command line arguments
jle doubhlé':'-'quoted string containing

, 'argu_;ments separated by a single

v —
g
1.{._.&

.....

"'ing the value of one argument

| épresents the number of parameters (not
including the script name)

ho Command
_ sages to the terminal followed
—n option to suppress the default

p t can be redirected or piped
ments can be quoted to preserve
s, double quotes to allow

ariable substitution or single quotes

disable variable substitution

'Command

anq__.éllows obtaining user
ring it into a variable
) is captured until the Enter key is

-n "What is your name? "

ame

L _'gic

2nt is to execute a
)ased on a condition

a test command,

square brag:_kéts: [condition |

yword: test condition

st can result in success (0) or

ss the negation "not” (!), is used

te : can corr_l_pa“?r"e‘"hﬁmbers, strings, and evaluate

" and != to compare strings,
or example: ["$name" = "Bob"]

U se -z and -n to check string length,
for example: [! -z "$name"]

- Use -gt, -It, -eq, -ne, -le, -ge for number,
for example: ["$salary” -gt 100000]

sts and has a size greater than zero)
: x@ﬁyand write permission is granted)
k for more details

Using Loops

- Afor loop is a very effective way to repeat the same

command(s) for several arguments such as file
names _ T
Syntax: Variable "item" will hold

one item from the list
every time the loop iterates

.+ for|item|in list
do

command(s) List can be typed in explicitly}
done

or supplied by a command

y Loop Examples

.| for addr in $(cat ~/addresses)
' do

mail -s "Newsletter” $addr < ~/spam/newsletter.txt
done

for countin 3 2 1 'BLAST OFF!II!!
do

sleep 1

echo $count
done

	ULI101
Week 10
	Lesson Overview
	Shell Configuration Files
	Shell Variables
	Common Shell Variables
	The PATH variable
	Assigning a Value
	Read-Only Variables
	Removing Variables
	Variable	Substitution
	Introduction to Shell Scripting
	Positional Parameters
	Positional Parameters
	echo Command
	read	Command
	Using Logic
	if Statement Example
	test Command
	test Command
	Using Loops
	Loop Examples

