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Shell Configuration Files

* Shell configuration files are scripts that are run when you
log in, log out, or start a new shell

- /etc/profile belongs to the root user and is the first start-up
file that executes when you log in, regardless of shell

. K“User-specific config files are in the user's home directory:
~/.bash_profile runs when you log in

~/.bashrc runs when you start an interactive subshell
~/.bash_logout runs when you log out

« The start-up files can be used, for example, to:
Set the prompt and screen display

Create local variables
Create temporary Linux commands (aliases)



Il Variables

are cla§éified in 2 groups
| 'variabl-és, describing the working

od varlables associated with scripts
,can Qé read/write or read- -only

me varlable can be any sequence of
. agg_.mbers but it must not start with a



hell Variables

variables shape the working
enever you are logged in
ariables include:

mary prompt

present working directory

absolute path to user's home

.ﬁ ame of the user logged in
~ —current shell

command will display all available variables



-ATH variable

\ment variable present in Unix/Linux
18, listing directories where executable

an customize a default PATH

shel 'arches,;the“sé directories whenever a command is
ed in the sequence listed

T
...........

2 of multiple matches use the which utility to determine
ch match has a precedence

ne systems the present working directory may not be
uded in the PATH by default

" prefix or modify the PATH as needed



ning a Value

able \ alues are to contain spaces or tabs
ould be surrounded by quotes

o :h phone=" 1 800 123-4567"



4 Read-Only Variables

- Including the keyword readonly before the
command assignment prevents you from
. changing the variable afterwards
. For example: readonly phone="123-4567"

» After a variable is set, it can be protected from

hanging by using the readonly command
1ax: readonly variable

\X_ample: readonly phone

o variable name is supplied a list of defined
read only variables will be displayed



r “t
B

ng Variables

0 out for them to be cleared



u wish,.-:t'b use the value of a
- contents), use the variable
eded by a dollar sign ($)



 Introduction to Shell Scripting

~+ Shell programming
- Scope ranges from simple day-to-day tasks to large database-
S driven CGl applications
.+ Shell-dependent — each shell script is written for a specific
h sh‘ell 'such as bash

i'---Flrst line of each script can specify the path to the
rogram which executes the script - #! statement, for
nple: #! /bin/bash

e the which utility to find out path to use: which bash

s must be the first line and nothing can precede it, not even
_a single space

- This line is not necessary if the script will be executed in the
- default shell of the user
~ Any line other than first one starting with a # is treated as a
comment



onal Parameters

can have parameters supplied
ne parameters are referred to

m _rs > $9 can be accessed by using the
ift command

" - shift will literally shift parameters to the

~ left by one or more positions

an also use the ${} form

is enables direct access to parameters >$9
-or example: ${10}



1al Parameters
esent all command line arguments
jle doubhlé':'-'quoted string containing

, 'argu_;ments separated by a single

v —
g
1.{._.&

.....

"'ing the value of one argument

| épresents the number of parameters (not
including the script name)



ho Command
_ sages to the terminal followed
—n option to suppress the default

p t can be redirected or piped
ments can be quoted to preserve
s, double quotes to allow

ariable substitution or single quotes

disable variable substitution



'Command

anq__.éllows obtaining user
ring it into a variable
) is captured until the Enter key is

-n "What is your name? "

ame



L _'gic

2nt is to execute a
)ased on a condition

a test command,







square brag:_kéts: [ condition |

yword: test condition

st can result in success (0) or

ss the negation "not” (!), is used

te : can corr_l_pa“?r"e‘"hﬁmbers, strings, and evaluate

" and != to compare strings,
or example: [ "$name" = "Bob" ]

U se -z and -n to check string length,
for example: [! -z "$name" ]

- Use -gt, -It, -eq, -ne, -le, -ge for number,
for example: [ "$salary” -gt 100000 ]



sts and has a size greater than zero)
: x@ﬁyand write permission is granted)
k for more details



Using Loops

- Afor loop is a very effective way to repeat the same

command(s) for several arguments such as file
names _ T
Syntax: Variable "item" will hold

one item from the list
every time the loop iterates

.+ for|item|in list
do

command(s) List can be typed in explicitly}
done

or supplied by a command




y Loop Examples

.| for addr in $(cat ~/addresses)
' do

mail -s "Newsletter” $addr < ~/spam/newsletter.txt
done

for countin 3 2 1 'BLAST OFF!II!!
do

sleep 1

echo $count
done
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