
ULI101
Week 10

Lesson Overview
●

●

●

●

●

●

●

●

Shell Configuration Files
Shell Variables
Introduction to Shell Scripting
Positional Parameters
echo and read Commands
if Statement
Test Command
for-in Loop

Shell Configuration Files
● Shell configuration files are scripts that are run when you

log in, log out, or start a new shell

/etc/profile belongs to the root user and is the first start-up
file that executes when you log in, regardless of shell

User-specific config files are in the user's home directory:
~/.bash_profile runs when you log in
~/.bashrc runs when you start an interactive subshell
~/.bash_logout runs when you log out

The start-up files can be used, for example, to:
• Set the prompt and screen display
• Create local variables
• Create temporary Linux commands (aliases)

●

●

●

Shell Variables
●

●

●

Shell variables are classified in 2 groups
– System (shell) variables, describing the working

environment
– User-created variables, associated with scripts

Variables can be read/write or read-only
Name of a variable can be any sequence of
letters and numbers, but it must not start with a
number

Common Shell Variables
●

●

Shell environment variables shape the working
environment whenever you are logged in
Common shell variables include:

–

–

–

–

–

–

–

PS1 – primary prompt
PWD – present working directory
HOME – absolute path to user's home
PATH – list of directories where executables are
HOST – name of the host
USER – name of the user logged in
SHELL – current shell

● The set command will display all available variables

The PATH variable
●

●

●

●

●

●

●

PATH is an environment variable present in Unix/Linux
operating systems, listing directories where executable
programs are located

Multiple entries are separated by a colon (:)

Each user can customize a default PATH

The shell searches these directories whenever a command is
invoked in the sequence listed

In case of multiple matches use the which utility to determine
which match has a precedence

On some systems the present working directory may not be
included in the PATH by default

Use ./ prefix or modify the PATH as needed

Assigning a Value
Syntax: name=value
For example:
course=ULI101

● If variable values are to contain spaces or tabs
they should be surrounded by quotes
For example: phone="1 800 123-4567"

Read-Only Variables
●

●

Including the keyword readonly before the
command assignment prevents you from
changing the variable afterwards
For example: readonly phone="123-4567"
After a variable is set, it can be protected from
changing by using the readonly command
Syntax: readonly variable
For example: readonly phone

● If no variable name is supplied a list of defined
read only variables will be displayed

Removing Variables
For example:
course=

OR
unset course

● Read-only variables cannot be removed –
you must log out for them to be cleared

Variable Substitution
●

●

Whenever you wish to use the value of a
variable (its contents), use the variable
name preceded by a dollar sign ($)
This is called variable substitution

Example:
name=Bob
echo $name

Introduction to Shell Scripting
● Shell programming

– Scope ranges from simple day-to-day tasks to large database-
driven CGI applications

●

●

Shell-dependent – each shell script is written for a specific
shell, such as bash
First line of each script can specify the path to the
program which executes the script - #! statement, for
example: #!/bin/bash

–

–
Use the which utility to find out path to use: which bash
This must be the first line and nothing can precede it, not even
a single space

– This line is not necessary if the script will be executed in the
default shell of the user

● Any line other than first one starting with a # is treated as a
comment

Positional Parameters
●

●

●

●

Every script can have parameters supplied
Command line parameters are referred to
as $0…$9
Parameters > $9 can be accessed by using the
shift command

– shift will literally shift parameters to the
left by one or more positions

Can also use the ${ } form
– This enables direct access to parameters >$9

For example: ${10}

Positional Parameters
●

●

$* and $@ represent all command line arguments

"$*" is a single double-quoted string containing
values of all arguments separated by a single
space

"$@" is multiple double-quoted strings, each
containing the value of one argument

$# represents the number of parameters (not
including the script name)

●

●

echo Command
●

●

●

Displays messages to the terminal followed
by a newline

– Use the –n option to suppress the default
newline

Output can be redirected or piped
Arguments can be quoted to preserve
spaces, double quotes to allow
variable substitution or single quotes
to disable variable substitution

read Command
● The read command allows obtaining user

input and storing it into a variable
– Everything is captured until the Enter key is

pressed
Example:
echo –n "What is your name? "
read name
echo Hello $name

Using Logic
The purpose of the if statement is to execute a
command or commands based on a condition
The condition is evaluated by a test command,
represented below by a pair of square brackets

if [condition]
then

command(s)
fi

if Statement Example

read password

if [”$password” = ”P@ssw0rd!”]
then
echo ”BAD PASSWORD!”

fi

Test with a condition
Notice the spaces after “[“ and before “]”

test Command
● The test command can be used in two ways:

–

–

As a pair of square brackets: [condition]
The test keyword: test condition

● The condition test can result in success (0) or
failure (1), unless the negation "not" (!), is used

● The test can compare numbers, strings, and evaluate
various file attributes

–

– Use = and != to compare strings,
for example: ["$name" = "Bob"]

– Use -z and -n to check string length,
for example: [! -z "$name"]

Use -gt, -lt, -eq, -ne, -le, -ge for number,
for example: [”$salary” -gt 100000]

test Command
●

●

Common file test operations include:
– -e (file exists)
– -d (file exists and is a directory)
– -s (file exists and has a size greater than zero)
– -w (file exists and write permission is granted)
Check man test for more details

Using Loops
● A for loop is a very effective way to repeat the same

command(s) for several arguments such as file
names
Syntax:

● for item in list
do

command(s)
done

Variable "item" will hold
one item from the list

every time the loop iterates

List can be typed in explicitly
or supplied by a command

for id in $(seq 1 1000)
do

mkdir student_$id
done

Loop Examples

for addr in $(cat ~/addresses)
do

mail -s ”Newsletter” $addr < ~/spam/newsletter.txt
done

for count in 3 2 1 'BLAST OFF!!!'
do

sleep 1
echo $count

done

	ULI101Week 10
	Lesson Overview
	Shell Configuration Files
	Shell Variables
	Common Shell Variables
	The PATH variable
	Assigning a Value
	Read-Only Variables
	Removing Variables
	Variable	Substitution
	Introduction to Shell Scripting
	Positional Parameters
	Positional Parameters
	echo Command
	read	Command
	Using Logic
	if Statement Example
	test Command
	test Command
	Using Loops
	Loop Examples

