
ULI101
Week 9

sed
• Stream Editor

• Checks for address match, one line at a time,
and performs instruction if address matched

• Prints all lines to standard output by default
(suppressed by -n option)

• Syntax:
sed 'address instruction' filename

sed
• Syntax:

sed [-n] 'address instruction' filename

• address
– can use a line number, to select a specific line (for example: 5)
– can specify a range of line numbers (for example: 5,7)
– can specify a regular expression to select all lines that match (e.g /^happy[0-9]/)

– Note: when using regular expressions, you must delimit them with a forward-slash"/"

– default address (if none is specified) will match every line

• instruction
– p - print line(s) that match the address (usually used with -n option)
– d - delete line(s) that match the address
– q - quit processing at the first line that matches the address
– s - substitute text to replace a matched regular expression, similar to vi

substitution

sed - Example 1
Unless you instruct it not to, sed sends all lines - selected or not - to standard output.
 When you use the –n option on the command line, sed sends only those lines to

stdout that you specify with the print "p" command

Example 1: The following command line displays all lines in the readme file that
contain the word line (all lowercase). In addition, because there is no –n option, sed
displays all the lines of input. As a result, sed displays the lines that contain the word
line twice.

$ sed '/line/ p' readme
Line one.
The second line.
The second line.
The third.
This is line four.
This is line four.
Five.
This is the sixth sentence.
This is line 7.
This is line 7.
Eight and last.

sed - Example 2
 Example 2: In this example, sed displays part of a file based on line

numbers.
 The Print instruction selects and displays lines 3 through 6.

$ sed -n '3,6 p' readme
The third.
This is line four.
Five.
This is the sixth sentence.

sed - Example 3
Example 3: The next command line uses the Quit instruction to cause sed
to display only the beginning of a file. In this case sed displays the first five
lines of text just as a head -5 lines command would.
Remember: sed prints all lines, beginning from the first line, by default. In this
example, sed will terminate when the address (in this case, line 5) is matched.

$ sed '5 q' readme
Line one.
The second line.
The third.
This is line four.
Five.

sed - Example 4
 Example 4: This example uses a regular expression as the pattern.
 The regular expression in the following instruction (^.) matches one

character at the beginning of every line that is not empty.
 The replacement string (between the second and third slashes) contains a

backslash escape sequence that represents a TABcharacter (\t) followed
by an ampersand (&).
The ampersand (&) takes on the value of what the regular expression

matched.

$ sed 's/^./\t&/' readme
Line one.
The second line.
The third.
...

•This type of substitution is useful for indenting a file to create a left margin

sed - Example 5
 Example 5: This example uses a regular expression as the pattern again.
 The regular expression in the following instruction ([0-9][0-9][0-9]$)

matches three digits at the end of a line.
 The instruction (q) instructs sed to stop processing lines once the regular

expression is matched

$ sed '/[0-9][0-9][0-9]$/ q' myfile
sfun 11
cool 12
Super 12a
Happy112

•The command will process the file, one-line at a time, beginning at the top,
and (by default) outputs each line to standard output. Once the regular
expression matches, it will display the matched line, and stop processing the
file any further.

sed – More Examples
• Syntax:

sed [-n] 'address instruction' filename

1. plym fury 77 73 2500
2. chevy nova 79 60 3000
3. ford mustang 65 45 17000
4. volvo gl 78 102 9850
5. ford ltd 83 15 10500
6. Chevy nova 80 50 3500
7. fiat 600 65 115 450
8. honda accord 81 30 6000
9. ford thundbd 84 10 17000
10. toyota tercel 82 180 750
11. chevy impala 65 85 1550
12. ford bronco 83 25 9525

sed -n '3,6 p' cars - display only lines 3 through 6
sed '5 d' cars - display all lines except the 5th
sed '5,8 d' cars - display all lines except the 5th through 8th
sed '5 q' cars - display first 5 lines then quit, same as head -5 cars
sed -n '/chevy/ p' cars - display only matching lines, same as grep 'chevy' cars
sed '/chevy/ d' cars - delete all matching lines, same as grep -v 'chevy' cars
sed '/chevy/ q' cars - display to first line matching regular expression
sed 's/[0-9]/*/' cars - substitute first digit on each line with an asterisk
sed 's/[0-9]/*/g' cars - substitute every digit on each line with an asterisk
sed '5,8 s/[0-9]/*/' cars - substitute only on lines 5 to 8
sed 's/[0-9][0-9]*/*** & ***/' cars - surround first number on each line with asterisks

Note that in the last 4 examples above, "*" has no special meaning between the 2nd and 3rd "/"

awk
• Syntax:

• awk 'pattern {action}' filename

• The pattern selects lines from the input. The awk utility performs the action
on all lines that match the pattern.

• The braces surrounding the action enable awk to differentiate it from the
pattern.

• If no pattern is specified, awk selects all lines in the input.

• If no action is specified, awk copies the selected lines to standard output

awk - Patterns
• Syntax:

• awk 'pattern {action}' filename

Patterns:
• You can use a regular expression, enclosed within slashes, as a pattern.
• The ~ operator tests whether a field or variable matches a regular

expression
• The !~ operator tests for no match.
• You can perform both numeric and string comparisons using relational

operators
• You can combine any of the patterns using the Boolean operators ||

(OR) and && (AND).

awk - Patterns

Relational operators (used in Patterns)

Relational operator Meaning

< Less than

<= Less than or equal to

== Equal to

!= Not equal to

>= Greater than or equal to

> Greater than

awk - Actions
• The action portion of an awk command causes awk to take that action

when it matches a pattern.
• When you do not specify an action, awk performs the default action, which

is the print command (explicitly represented as {print}). This action copies
the record (normally a line) from the input to standard output.

• When you follow a print command with arguments, awk displays only the
arguments you specify.
• These arguments can be variables or string constants.

• Unless you separate items in a print command with commas, awk
catenates them.
 Commas cause awk to separate the items with the output field

separator
• You can include several actions on one line by separating them with

semicolons.

awk - Variables
• In addition to supporting user variables, awk maintains program variables.
• You can use both user and program variables in the pattern and action

portions of an awk command.

Variable Meaning
$0 The current record (as a single variable)
$1–$n Fields in the current record
FILENAME Name of the current input file (null for standard input)

FS Input field separator (default: SPACE or TAB)

NF Number of fields in the current record

NR Record number of the current record

OFS Output field separator (default: SPACE)

ORS Output record separator (default: NEWLINE)

RS Input record separator (default: NEWLINE)

awk – Example 1
• Because the pattern is missing, awk selects all lines of input.
• When used without any arguments the print command displays each

selected line in its entirety.
• This command copies the input to standard output.

$ awk '{ print }' cars
plym fury 77 73 2500
chevy nova 79 60 3000
ford mustang 65 45 17000
volvo gl 78 102 9850
ford ltd 83 15 10500
Chevy nova 80 50 3500
fiat 600 65 115 450
honda accord 81 30 6000
ford thundbd 84 10 17000
toyota tercel 82 180 750
chevy impala 65 85 1550
ford bronco 83 25 9525

awk – Example 2
• This example has a pattern but no explicit action.
• The slashes indicate that chevy is a regular expression.
• In this case awk selects from the input just those lines that contain the string

chevy (lowercase).
• When you do not specify an action, awk assumes the action is print. The

following command copies to standard output all lines from the input that
contain the string chevy:

$ awk '/chevy/' cars
chevy nova 79 60 3000
chevy impala 65 85 1550

awk – Example 3
• These two examples select all lines from the file (they have no pattern).
• The braces enclose the action; you must always use braces to delimit the

action so awk can distinguish it from a pattern.
• These examples display the third field ($3), and the first field ($1) of each

selected line, with and without a separating space:

$ awk '{print $3, $1}' cars
77 plym
79 chevy
65 ford
78 Volvo
...

$ awk '{print $3 $1}' cars
77plym
79chevy
65ford
78Volvo
...

awk – Example 4
• This example, which includes both a pattern and an action, selects all lines

that contain the string chevy and displays the third and first fields from the
selected lines:

$ awk '/chevy/ {print $3, $1}' cars
79 chevy
65 chevy

awk – Example 5
• This example uses the matches operator (~) to select all lines that contain

the letter h in the first field ($1), and because there is no explicit action,
awk displays all the lines it selects.

$ awk '$1 ~ /h/' cars
chevy nova 79 60 3000
Chevy nova 80 50 3500
honda accord 81 30 6000
chevy impala 65 85 1550

awk – Example 6
• The caret (^) in a regular expression forces a match at the beginning of the

line or, in this case, at the beginning of the first field, and because there is no
explicit action, awk displays all the lines it selects.

$ awk '$1 ~ /^h/' cars

honda accord 81 30 6000

awk – Example 7
• This example shows three roles a dollar sign can play within awk.

 First, a dollar sign followed by a number identifies a field ($3).
 Second, within a regular expression a dollar sign forces a match at the

end of a line or field (5$).
 Third, within a string a dollar sign represents itself.

$ awk '$3 ~ /5$/ {print $3, $1, "$" $5}' cars
65 ford $17000
65 fiat $450
65 chevy $1550

awk – Example 8
• Square brackets surround a character class definition.
• In this example, awk selects lines that have a second field that begins with t

or m and displays the third and second fields, a dollar sign, and the fifth field.
• Because there is no comma between the “$” and the $5, awk does not put

a SPACE between them in the output.

$ awk '$2 ~ /^[tm]/ {print $3, $2, "$" $5}' cars
65 mustang $17000
84 thundbd $17000
82 tercel $750

awk – Examples 9 & 10
• The equal-to relational operator (==) causes awk to perform a numeric

comparison between the third field in each line and the number 83.
• This awk command takes the default action, print, on each line where

the comparison is successful.

$ awk '$3 == 83' cars
ford ltd 83 15 10500
ford bronco 83 25 9525

• The next example finds all cars priced (5th field) at or less than $3,000.

$ awk '$5 <= 3000' cars
plym fury 77 73 2500
chevy nova 79 60 3000
fiat 600 65 115 450
toyota tercel 82 180 750
chevy impala 65 85 1550

awk – Example 11
• When both sides of a comparison operator are numeric, awk defaults to a numeric

comparison. To force a string comparison, double quotes can be used.

• The following examples illustrate the effect of using double quotes.

$ awk '"2000" <= $5 && $5 < 9000' cars
plym fury 77 73 2500
chevy nova 79 60 3000
Chevy nova 80 50 3500
fiat 600 65 115 450
honda accord 81 30 6000
toyota tercel 82 180 750

$ awk '2000 <= $5 && $5 < 9000' cars
plym fury 77 73 2500
chevy nova 79 60 3000
Chevy nova 80 50 3500
honda accord 81 30 6000

• Notice that, for example, "2000" is less then "450" as a
string, but 2000 is NOT less than 450 as a number

awk – More EXAMPLES
• Syntax:

awk 'pattern {action}' filename

1. plym fury 77 73 2500
2. chevy nova 79 60 3000
3. ford mustang 65 45 17000
4. volvo gl 78 102 9850
5. ford ltd 83 15 10500
6. Chevy nova 80 50 3500
7. fiat 600 65 115 450
8. honda accord 81 30 6000
9. ford thundbd 84 10 17000
10. toyota tercel 82 180 750
11. chevy impala 65 85 1550
12. ford bronco 83 25 9525

awk 'NR == 2, NR == 4' cars - display the 2nd through 4th lines
awk -F':' '{print $6}' /etc/passwd - specifies that : is input field separator,

default is space or tab
awk '$2 ~ /[0-9]/' cars - searches for reg-exp (a digit) only in the second field

	Slide Number 1
	sed
	sed
	sed - Example 1
	sed - Example 2
	sed - Example 3
	sed - Example 4
	sed - Example 5
	sed – More Examples
	awk
	awk - Patterns
	awk - Patterns
	awk - Actions
	awk - Variables
	awk – Example 1
	awk – Example 2
	awk – Example 3
	awk – Example 4
	awk – Example 5
	awk – Example 6
	awk – Example 7
	awk – Example 8
	awk – Examples 9 & 10
	awk – Example 11
	awk – More EXAMPLES

