
ULI101
Week 05

Week Overview
●

●

●

●

●

Simple Filter Commands: head, tail, cut, sort, wc,
grep, tr
Redirection of Standard Input, Output, and Error
Pipes and tee

/dev/null File
Here Documents

head and tail Commands
●

●

●

These commands display the beginning
or the end of a file respectively
By default, 10 lines are displayed

– The entire file will be displayed if it is less
than 10 lines in length

Example usage:
head [-line_count] file

for example: head –3 cars
for example: tail –3 cars

cut
●

●

Selects which fields or columns to display from
files or standard input
Range can be specified in multiple ways:

–

–

–

–

–

1–10
3–8
–10
2–
1–3,4,10–

– first 10
– 3rd to 8th

– up to 10th

– from 2nd until the end of line
– combination of above

● Important options:
– -c – cut characters

Example: cut -c1-2 – will cut first 2 characters

– -f – cut fields
Example: cut –f2,5 – will cut 2nd and 5th field

cut fields
●

●

Default field delimiter is the tab
Other field delimiter can be specified using the –d option
For example:
cut–d,–f1–2 – will cut first 2 fields delimited with a

comma
●

●

Field delimiter must be a single character, only one
character delimiters are supported
If special characters are used for delimiters they must be
quoted
For example:
cut –d" " –f1 – space is the field delimiter

sort command
●

●

●

Sorts files or standard input
Is able to sort by fields
Popular options:

• -f – fold (ignore case in comparisons)
• -n – numeric sort (default is ascii)
• -u – display unique entries only
• (do not display duplicate lines)
• -r – reverse sort (default is lowest to

highest value)

wc
●

●

●

Counts the number of lines, words and/or
characters in files or standard input
Usage:
wc option [filename]

Options:
– -l
– -w
– -c
– -m

– count lines
– count words (delimited by whitespace)
– count bytes
– count characters

– If no option is specified, line, word, and byte counts
are displayed

– Note than one extended ascii character is one byte

grep
●

●

●

●

Searches for literal text and text patterns
– Pattern-based searches will be covered in

detail later in this course
Example usage: grep ford cars

Works with files or standard input
Acts like a filter – outputs only lines which are
successfully matched to a given regular expression

– A successful match can be an entire line
or any part of it, but the entire line will be
displayed

Useful grep options
●

●

●

●

-i – ignores case
-n – numbers lines in the output
-v – reverse match
-c – displays count of matched lines

Standard Input and Standard Output
●

●

●

●

●

●

Standard input (stdin) is a term which describes from
where a command receives input
Standard output (stdout) describes where a command
sends it's output
For most commands the default standard input and
output are your terminal's keyboard and screen
Standard input can be redirected from a file or piped
from another command
Most commands also accept a filename argument,
which is internally redirected to standard input
Standard output can be redirected to a file or piped to
another command

Standard Input Redirection

●

●

command < filename
Example:
tr 'a-z' 'A-Z' < cars

Used for commands which do not accept
a filename as an argument

Standard Output Redirection
command > filename

●

●

Redirects a command's standard output to a file
Stdout redirection is represented by the > symbol
Example:
ls > ls.txt - will save output from the ls

command into a file called ls.txt
●

●

If the file exists already its content will be replaced
To append (add) to a file, the >> symbol can be used

Standard Error
●

●

●

●

●

In addition to standard input and standard
output UNIX commands have standard error,
where error messages are sent
By default error messages are sent to the
terminal
Standard error can be redirected by using the
2> or 2>> redirection operators
To redirect standard error to the same place as
standard output, use 2>&1 redirection
To redirect stdout to the same place as stderr,
use >&2 redirection - this is how error
messages are created in shell scripts

Pipes
●

●

●

●

Commands can send their standard
output directly to standard input of other
commands
A few simple commands can be combined
to form a more powerful command line
No temporary files are necessary
This is achieved by using pipes and tees

Pipes
●

●

●

Pipes are represented by |
Many commands can be "piped" together,
filter commands are especially useful

– Each filter processes the initial
input based on it's design

– Filters must be chained in a specific
order, depending on what you wish to
accomplish

Example piping use:
ls -al | more

Tee
● UNIX pipe with the tee utility can be used

to split the flow of information
Example:
ls | tee unsorted.txt | sort

ls tee sort

unsorted.txt

/dev/null File
●

●

The /dev/null file (sometimes called the bit bucket or
black hole) is a special system file that discards all
data written into it

– Useful to discard unwanted command
output, for example:
find / -name "tempfile" 2> /dev/null

Also, /dev/null can provide null data (EOF only) to
processes reading from it

– Useful to purge (empty) files etc, for
example: cat /dev/null > ~/.bashrc

"Here" Documents
● The << symbol indicates a "here" document

Example:
sort << EOF
word
name
car
EOF
●

●

Anything between EOF…EOF is sent to the
standard input of a utility
You can use some other string instead of "EOF"
This is especially useful for embedding a small file
within a shell script

●

	ULI101Week 05
	Week Overview
	head and tail Commands
	cut
	cut fields
	sort command
	wc
	grep
	Useful grep options
	Standard Input and Standard Output
	Standard Input Redirection
	Standard Output Redirection
	Standard Error
	Pipes
	Pipes
	Tee
	/dev/null	File
	"Here" Documents

