
ULI101
Week 04

Week Overview
●

●

●

●

Data Representation
Decimal, Binary, Octal, and Hexadecimal
Numbering Systems
Number Conversion
File Permissions
- chmod, umask

Data Representation

Why Study Data Representation?

–

–

Computers process and store information in binary format
For many aspects of programming and networking, the details
of data representation must be understood

–

–

– C Programming – sending information over networks, files

Unix / Linux – setting permissions for files and directories

Web Pages – setting color codes

Data Representation
● In terms of this course, we will learn how a simple

decimal number (integer) is stored into the computer
system as a binary number.

● We will also learn other numbering systems (octal
and hexadecimal) that can be used as a "short-cut"
to represent binary numbers.

Data Representation
● Before we learn numbering systems, we have to "go-

back in time" to see how we learned the decimal
numbering system.

● The decimal numbering system (base 10) uses
10 symbols for each digit (0, 1, 2, … 9). Since most
humans have 10 digits on their hands (2 thumbs, 8
fingers), many suspect that is why humans work
with decimal numbers.

Data Representation
Decimal Numbers

 Back in grade school we learn how to understand
decimal numbers. For example, take the decimal
number 3572. In grade school, we probably learned
to break-down this number as follows:

3 thousands
5 hundreds
7 tens
2 ones

Data Representation
Decimal Numbers

 Another way to look at this number is multiplying the
digit by 10 (the numbering base) raised to increasing
powers (starting at 0 for the "ones" and moving
towards the higher digits)

3 thousands = 3 x 103 = 3 x 1000
5 hundreds = 5 x 102 = 5 x 100
7 tens
2 ones

= 7 x 101 = 7 x 10
= 2 x 100 = 2 x 1

This way of
understanding decimal
numbers is the basis
for math operations
such as addition,
subtraction,
multiplication, decimal
numbers, etc!

Data Representation
Binary Numbers

 We can use a similar method to convert a binary
number to a decimal number. We do the same thing
as in the previous slide, but we multiply by base 2
instead of base 10. Take the binary number 1101:

Remember, start from
the right-hand-side and
move to the left.

1 x 23 = 1 x 8 = 8

1 x 22 = 1 x 4 = 4

0 x 21 = 0 x 2 = 0

1 x 20 = 1 x 1 = 1

+
1 3

Therefore, 1 1 0 1 in binary i s 1 3
in decimal . For programmers,
the 8-bit binary number
0 0 0 0 1 1 0 1 can represent the
uns igned integer 1 3 !

Data Representation
Octal Numbers

 The octal numbering system (base 8) uses 8 symbols for
each digit (0, 1, 2, … 7). We can use the same process as
in the previous slide to convert an octal number to a decimal
number (but use base 8 instead!) . Convert the octal
number 2741 to decimal:

2 x 83 = 2 x 5 1 2 = 1 0 2 4 Remember, start from
the right-hand-side and
move to the left.

7 x 82 = 7 x 6 4 = 4 4 8

4 x 81 = 4 x 8 = 3 2

1 x 80 = 1 x 1 = 1

+
15 0 5

Therefore, 2 7 4 1 in octal i s
1 5 0 5 in decimal.

Data Representation
Hexadecimal Numbers

 The hexadecimal numbering system (base 16) uses
16 symbols for each digit (0, 1, 2, … 9, A, B, C, D, E, F). Why
use letters? Because it is convenient to represent higher
digits 10 – 15 as a single character! Let’s convert the
hexadecimal number F2A to decimal:

F x 162 = 15 x 162 = 1 5 x 2 5 6 = 3 8 4 0

2 x 161 = 2 x 161 = 2 x 1 6 = 3 2

1 0A x 160 = 10 x 160 = 1 0 x 1 =

+
38 8 2

Therefore, F2A in
Hexadecimal
i s 3 8 8 2 in decimal.

Data Representation
● You should understand now how decimal numbers can be

stored in the computers as binary numbers, but why are
we learning Octal and Hexadecimal numbers?

● As computers and computer programming languages
evolved, octal and hexadecimal numbers were considered
"short-hand”, a short-cut to represent binary numbers.

For example:
–

–

Each octal digit represents exactly 3 binary digits.
Each hexadecimal digit represents exactly 4 binary digits.

Data Representation
● Linux/Unix administrators, networking specialists,

programming analysts, and car-crash investigators use
these types of shortcuts which help save space and time
issuing a command.

Cars provide hexadecimal codes to
record info prior to impact!

Hexadecimal numbers can
refer to memory addresses
which point to incorrect
programming procedure!

Unix/Linux command
to al low fi le read, write
and execute access to
the f i le ’s owner only !

Number Conversion
● You will be converting between any number system whether

it is from binary to decimal, binary to octal, decimal to binary,
octal to hexadecimal, etc.

● The next series of slides provide shortcuts for performing
these numbering system conversions. The symbol ^ is used
to represent “raised to the power of”.

For Example: 10^3 = 103

Converting Binary to Octal
Convert the binary number 11110000 to an octal

=
x

number:

0 1 1 1 1 0 0 0 0
2^2 2^1 2^0 2^2 2^1 2^0 2^2 2^1 2^0

=

i.e. (4) (2) (1)
0x4+ 1x2+ 1x1

3

(4) (2) (1)
1X4+ 1x2+ 0x1

6

(4) (2) (1)
0X4+ 0x2+ 0x1

0
Therefore, the binary number 11110000 represents 360 as an
octal number. This code can be used to represent directory and
file permissions (you will learn how to set permissions soon)

Remember :

1 octal digit i s equal
to 3 binary digits .
Group binary digits
into groups of 3
starting from the
right. Add leading
zeros i f left-most
group has les s then 3
digits . Convert each
group of 3 digits to an
octal digit .

Converting Octal to Binary
Similar to previous calculation, but in reverse:

Convert octal number 360 to binary.

3 6 0

(4)(2)(1) (4)(2)(1)
0 1 1 1 1 0

(4)(2)(1)
0 0 0

= 011110000

“Spread-out” octal
number to make
room for binary
number result.

Determine digits (0’s
or 1’s) that are
required when
multiplied by
appropriate power of
2 to add up to octal
digit.

Converting Binary to Hex
Convert the binary number 111110000 to a hexadecimal
number:

= 0 0 0 1 1 1 1 1
(8) (4) (2) (1) (8) (4) (2) (1)

0 0 0 0
(8) (4) (2) (1)

1 15 0
1 F 0

Therefore, the binary number 111110000 represents 1F0 as a
hexadecimal number.

Note:

1 hexadecimal digit is
equal to 4 binary digits .
Group binary digits into
groups of 4 starting from
the right. Add leading
zeros i f last group of digits
i s l e s s than 4 digits .
Convert each group of 4
digits to a hexadecimal
digit .

Converting Hex to Binary
Similar to previous calculation, but in reverse:

Convert hexadecimal number 1F0 to binary.

1 F 0
1 15 0

(8)(4)(2)(1)
0 0 0 1

(8)(4)(2)(1) (8)(4)(2)(1)
1 1 1 1 0 0 0 0

= 000111110000 = 111110000

“Spread-out” hex
number to make
room for binary
number result.

Determine digits (0’s
or 1’s) that are
required when
multiplied by
appropriate power of
2 to add up to
hexadecimal digit.

Converting Decimal to Binary
Converting decimal to binary
Example: Convert 78 to a binarynumber

● List the powers of 2 (until greater than or equal to 78)
Start with the highest number equal or just less than 78.
Put a binary digit "1" below that number and subtract
that decimal equivalent from 78 (eg. 78 – 64 = 14).
Repeat the same step for the remainder until result is zero.
Any numbers NOT used become binary digit "0"

64 32 16 8 4 2 1

1
6-4=2

1 0 0 1
78-64=14 14-8=6

1 0
2-2=0

File Permissions
As you may recall from our previous notes, Unix/Linux
recognizes everything as a file:

Regular files to store data, programs, etc.
Directory files to store regular files and subdirectories
Special device files which represent hardware such as hard disk
drives, printers, etc…

You may ask, “Since I can navigate throughout the Unix/Linux file
system – what prevents someone from removing important files on
purpose or by accident?”

Answer: Ownership of the file, and file permissions

File Permissions

In previous classes, you may have only noted a few
items from a detailed listing such as type of file, file
size, and date of creation/modification.

Let’s look at the following detailed listing of a device (a hard-
disk partition) located in the /dev (devices) directory and
explore more items:

[username] ls -l /dev/hda
brw-r----- 1 root disk 3,0 2003-03-14 08:07 /dev/hda

Let’s explore the results of this detailed listing in the next slide

File Permissions

brw-r----- 1 root disk 3,0 2003-03-14 08:07 /dev/hda

This indicates the user who "owns"the file.
In this case, the superuser or "root"
probably created the file…

File Permissions

brw-r----- 1 root disk 3,0 2003-03-14 08:07 /dev/hda

This indicates:
1. File Type (i.e. "b" or "c" for device file,

"-" for regular files, "d" for directory)

2.File Permissions (i.e. what permissions are granted
by the owner regarding file access,
file modification, and/or file
execution)

Let’s look at these permissions in more
detail in the next slide…

File Permissions

brw-r-----

File type File permissions

File Permissions

brw-r-----

File type File permissions

File owner permiss ions :

In this case , the owner (in this case root)
can access (read) the fi le , the owner can modify
(write) the f i le , but a da s h instead of an "x"
means that the owner cannot run (execute)
the f i le l ike a program….

File Permissions
OK, I can now see that the owner (root) is the only user
that has permissions to make changes (write) to the
file /dev/hda, so no other user can damage or edit and
save changes to that file.

But what if an owner of a file wanted other users to view
or write to their file? Can the owner of the file allow
access to some users, and not to others?

Answer: That is what the other 2 sets of permissions
are for. Look at the next slide…

File Permissions
Let’s look at the detailed listing for a regular file owned
by someone else:

[joe.professor] ls -l ~/work_together

-rw-rw---- 1 joe.professor users 0 2006-02-02 10:47 ~/work_together

File Permissions
Let’s look at the detailed listing for a regular file owned
by someone else:

[joe.professor] ls -l ~/work_together

-rw-rw---- 1 joe.professor users 0 2006-02-02 10:47 ~/work_together

This indicates the user "joe .professor" owns
the f i le "work_together". The owner "joe .professor"
can read and write to that f i le .

By the way, you can change the ownership of f i les
(us ing the chown command, as suming you own them)

File Permissions
Let’s look at the detailed listing for a regular file owned
by someone else:

[joe.professor] ls -l ~/work_together

-rw-rw---- 1 joe.professor users 0 2006-02-02 10:47 ~/work_together

This indicates a group name (cal led "users")
that i s a s s i gned to that f i le "work_together".

File Permissions
Let’s look at the detailed listing for a regular file owned
by someone else:

[joe.professor] ls -l ~/work_together

-rw-rw---- 1 joe.professor users 0 2006-02-02 10:47 ~/work_together

In this ca se the user "joe .professor" h a s g iven
permission to users that be long to the
"users" group to read and write to the f i le
"work_together".

File Permissions
Let’s look at the detailed listing for a regular file owned
by someone else:

[joe.professor] ls -l ~/work_together

-rw-rw---- 1 joe.professor users 0 2006-02-02 10:47 ~/work_together

What does this last set of permissions refer to?

Answer : al l "other" users - users that DO NOT belong
to the "users" group. !

Directory Permissions
●

●

We use the same letters for permissions as for
regular files and permissions are assigned for
owner, group, and others
However, since a directory is a special kind of file
which holds lists of other files, permissions work
differently than for regular files:

– r – allows listing contents of the directory
– w – allows creating and deleting within the

directory, but only when combined with the
"x" permission

– x – allows access to files inside, called
"pass-through" permission

Pass-Through Permission
Pass-through permission is the key to grant
access to only selected directories and/or files
For example – you wish to give "others" access to:

/home/you/documents/uli101/jokes.txt

– Besides read permission for jokes.txt, the "other"
group also needs pass-through permission for the
directories you, documents, and uli101
For security, you should not grant access
permissions to others by default
Give others permissions to files in specific cases
only, such as in this example (jokes.txt)

–

–

File Permissions
Changing Permissions via chmod command

chmod permissions file(s)

– Can be used to change permissions for directories and
regular files.

– There are two ways to set permissions:

●

●

Symbolic Method (using alphabetic characters)
- sometimes called relative method

Octal Method (using Octal Numbers)
- sometimes called absolute method

chmod Symbolic Method
– Permissions are set for:

user (u), group (g), others (o), or all (a)

– Permissions are set by:
adding (+), removing (-) and/or setting (=)

– Permissions are set to:
read (r), write (w) and/or execute (x)

Examples:
Add Permission:

Remove Permission:

Set Permission:

Combined:

chmod g+rw file1

chmod a-w *txt

chmod go=rx /tmp/xyz

chmod u+rx,g-x,o= .

chmod Octal Method
You can use the chmod command with 3 octal number
to represent permissions for user, group, and others

In this method, each permission has a numerical value:

r = 4
w = 2
x = 1

The resulting permission is the sum of the above, for
example "rw" permission has a value of "6".

chmod 755 file - results in: rwxr-xr-x
chmod 531 file - results in: r-x-wx--x

umask
●

●

Sets default permissions for newly created files and directories

Octal only, but specifies permissions to remove:
umask permissions-to-remove
For example: umask 026
is similar to: chmod 751 (for a directory)

●

●

Each file permission is a subtraction result:
default

umask

7 7 7
- - -
0 2 6
= = =

result 7 5 1 (for a directory)

●

For ordinary files any execute permissions are then removed

So for ordinary files, umask 026 would result in permissions 640
(rw-r-----)

	ULI101Week 04
	Week Overview
	Data Representation
	Data Representation
	Data Representation
	Data Representation
	Data Representation
	Data Representation
	Data Representation
	Data Representation
	Data Representation
	Data Representation
	Number Conversion
	Converting Binary to Octal
	Converting Octal to Binary
	Converting Binary to Hex
	Converting Hex to Binary
	Converting Decimal to Binary
	File PermissionsAs you may recall from our previous notes, Unix/Linux recognizes everything as a file:
	File Permissions
	File Permissions
	File Permissions
	File Permissions
	File Permissions
	File Permissions
	File Permissions
	File Permissions
	File Permissions
	File Permissions
	File Permissions
	Directory Permissions
	Pass-Through Permission
	File Permissions
	chmod Symbolic Method
	chmod Octal Method
	umask

