
ULI101
Week 03

Week Overview
●

●

●

●

●

●

Specifying Pathnames
Working With Directories
File Name Expansion

Shell Basics
Command Recall and Editing
Quoting

Specifying Pathnames
 A pathname is a fully-specified location of a unique

filename within the file system

 The concept of a pathname relates to every operating
system including Unix, Linux, MS-DOS, MS-Windows,
Apple-Macintosh, etc!

 Examples:




Directory pathname:
/home/username/ics124/assignments

File pathname:
/home/username/ics124/assignments/assn1.txt

For example. to use a file called "cars", it must be
located without ambiguity because there may be
several files by that name in various directories



Absolute and Relative Pathnames
Absolute Pathname





An absolute pathname begins from the root, which is / (forward slash)
This is called absolute because it is specified the same, and locates a
specific file, regardless of your current directory
For example: mkdir /home/someuser/uli101
will create the uli101 directory in the home directory of user someuser

Relative Pathname





A relative pathname begins from your current directory
This is called relative because it is used to locate a specific file relative
to your current directory
For example: mkdir uli101
will create the uli101 directory in your current directory!





Relative Pathnames
Rules:
 A relative pathname does NOT begin with a slash.

 Following symbols can be used:
.. parent directory (up one directory level)
. current directory

 Not all relative pathnames begin with . or .. !

Warning:

When using relative pathname, always
make certain you know your present
working directory!

Relative Pathnames
Examples:

■ Change to another directory branch from
parent directory:
cd ../ipc144

■ copy sample.c file from parent of your
current directory to your current directory:
cp ../sample.c .

Relative-to-Home Pathnames
 You can specify a pathname as relative-to-home by

using a tilde and slash at the start, e.g.,
~/uli101/notes.html

 The tilde ~ is replaced by your home directory
(typically /home/username) to make the pathname
absolute.

 You can immediately place a username after the tilde to
represent another user’s home directory. For example:
~jane = /home/jane

 But be careful, a slash makes a big difference:
~/jane = /home/username/jane

Which Type of Pathname to Use?
So far, we have been given several different types of
pathnames that we can use for regular files and directories:

–

–

–

Absolute pathname (starts with /)
Relative pathname (doesn’t start with / or ~)
Relative-to-home pathname (starts with ~)

You can decide which pathname type is more convenient,
usually to minimize typing

Working With Directories
Building directories is similar in
approach to building a house







Begins from a foundation (eg home directory).
Need to build in proper order (add on addition to
house in right location). Use a logical scheme.
Must provide proper absolute or relative or relative-
to-home pathnames!!

Planning Directories
Good directory organization requires planning:

 Group information together logically.

 Plan for the future: use dated directories where
appropriate (~/christmas/2001, ~/christmas/2002)

 Too few directories = excessive number of files in
each; too many directories = long pathnames.

Where to build directories?
●

●

●

●

Want to build a directory called tmp that
branches off of your home directory?

Verify you’re in your home directory (either look
at directory from command prompt or issue the
command pwd) or just enter cd with no
arguments

Type mkdir tmp at the Unix prompt, followed
by <ENTER>
Optionally you can verify that directory has been
created using ls -l or ls -ld commands

Creating Parent Directories
By default, a directory cannot be created in a non-
existent location – it needs a parent directory
To create directory paths with parent directories that do
not exist (using a single command) use the -p option for
the mkdir command

mkdir -p pathname

eg. mkdir -p mur/dir1
(This would create the parent directory mur and then
the child directory dir1. The -p means "create any
required parent directories in the path").

Removing Directories
Removing directories is reverse order of building
directories









Issue command rmdir directory
rmdir cannot remove directories containing files or
subdirectories.
rmdir cannot remove directories that are anyone's current directory.
Need to step back to at least parent directory to remove an empty
directory.

Removing Sub-trees




To remove a sub-tree (a directory and all of its contents
including subdirectories) use
rm -r directory (or rm -R directory).
You can use the rm –rf command (-f = force) to delete
files and directories recursiverly, even if they are write-
protected

 Caution!
Remove files only if you are absolutely sure what you
are doing!

 Caution! rm -r can erase large numbers of files
very quickly. Use with extreme care!

 Backup is a very good idea!

●

Filename Expansion
Many of the commands discussed so far make
reference to a specific filename – e.g. a
regular file to store data or a directory.

● Sometimes the user may not know the exact
name of a file, or the user wants to use a
command to apply to a number of files that have
a similar name.

For example: work.txt, work2.txt, work3.txt

●

Filename Expansion
Special characters can be used to expand a general filename
and use them if they match. You may have heard about
“Wildcard Characters” – this is a similar concept.

● Filename expansion Symbols:

* (star/asterisk) – Represents zero or more of any
characters.

? (question mark) – Represents any single character

[] (character class) – Represents a single character, any of
the l ist inside of the brackets. Placing a ! Symbol after
first square bracket means "not"). Ranges such as [a-z]
or [0-3] are supported.

Filename Expansion
● To demonstrate filename expansion, let’s assume the

following regular files are contained in our current directory:

work1.txt work2.txt work3.txt work4.c worka.txt
working.txt

● Note the results from using filename expansion:

ls work*
work4.cwork1.txt work2.txt work3.txt

worka.txt working.txt
ls work?.txt
work1.txt work2.txt work3.txt worka.txt
ls work[2-4].txt
work2.txt work3.txt
ls work[!2-4]*.txt
work1.txt worka.txt working.txt

Shell Basics

●

●

●

●

●

●

Command interpreter for UNIX
Acts as a mediator between user and UNIX kernel
Processes and/or executes user commands
More than one command can be executed on one
command line when separated by a semi-colon
You will be learning approx. 30 Unix commands in this
course

– This is a small, compared to the the roughly 6000 Unix
commands out there

The term command and utility mean the same in Unix

UNIX shell

●

●

There are several kinds of shells available for
UNIX
Most popular shells are:

–
–
–

C shell (this is not the C programming language)
Korn shell – used with Unix
Linux machines most often use the BASH shell
(Bourne-Again Shell)

●

●

Each user on one machine can run a different
shell
UNIX scripting = UNIX shell programming

Why command line?
● Why don’t we just use the GUI (KDE, Gnome or some

other window manager)?
– GUI may not always be available

● What if something is broken?
● What if you are connecting through a terminal remotely?

–

–

GUI is for regular users
● Most of the 6000 commands are not in the menus

Command line is more efficient
● Tasks are completed faster
● Less system resources are wasted

– Command line allows you to automate repeating tasks
through scripting

● Writing scripts requires you to know commands

Command Execution
●

●

●

●

●

While command is being executed the shell
waits for it to finish
This state is called sleep
When the command finishes executing the shell
displays the prompt
It is possible to get the command prompt before
the command finishes
This requires executing a process in the
background (examined later in this course)

Command Line Syntax
● A line which includes UNIX commands or

program or shell script names and their
arguments is called a command line

●

●

Commands, options, and arguments
are separated by whitespace

A command line is actually executed when
the <ENTER> key is pressed

Command Recall & Editing
● Previously executed commands can be recalled

–

–

The BASH shell uses the up/down arrow keys to recall
commands, by default
Other shells may use some other mechanism, for example Korn
shell uses vi-style command editing

– Recalled commands can be easily edited before re-executing
● Useful BASH keyboard shortcuts:

–

–

–

–

–

–

–

–

Go to the beginning of the line: CTRL+A
Go to the end of the line: CTRL+E
Erase Characters: Backspace or CTRL-Backspace or CTRL-h
Delete a word before the cursor: CTRL-w
Delete everything to beginning of line: CTRL-u
Clear Screen: CTRL-l
Search for a keyword in previous commands: CTRL+R
Auto complete file/directory names: Tab

Quoting in UNIX
●

●

●

Sometimes it may be necessary to use characters that
have special meaning to the shell
In such cases such characters may need to be quoted
There are several ways of quoting special characters in
UNIX, including:

–

–

–

Backslash (\)
Double quotes (" ")
Single quotes (' ')

– quotes one character that follows
– quote a group of characters
– quote a group of characters

\ Quote
●

●

●

●

Quotes the one immediately following
character
Can prevent variable substitution when
the $ character is quoted
Example:
echo * - will show non-hidden files in
your pwd, but echo * - will show *
To quote a \, another \ is used (\\)

‘ - Single Quotes
Forward single quote – different than the back tick
(backward single quote)
Single quotes preserve whitespace and do not allow
filename expansion
Single quotes are "strong quotes" because they don’t allow
variable substitution and various expansions
Examples:
echo .* – will show all hidden files in pwd, while
echo '.*' – will show .*
school=Seneca

echo $school – will show Seneca, while
echo '$school' – will show $school

" - Double Quotes
Double quotes preserve whitespace and do not
allow filename expansion
Double quotes are “weak quotes” because they
allow variable substitution and various
expansions
Examples:
echo .* – will show all hidden files in pwd,
while
echo ".*" – will show .*
school=Seneca

echo "$school" – will show Seneca

	ULI101
Week 03
	Week Overview
	Specifying Pathnames
	Absolute and Relative Pathnames
	Relative Pathnames
	Relative Pathnames
Examples:
	Relative-to-Home Pathnames
	Which Type	of Pathname	to Use?
So far, we have been given several different types of pathnames that we can use for regular files and directories:
	Working With Directories
	Planning Directories
	Where to build directories?
	Creating Parent Directories
	Removing Directories
	Removing Sub-trees
	Filename Expansion
Many of the commands discussed so far make reference to a specific filename – e.g. a regular file to store data or a directory.
	Filename Expansion
Special characters can be used to expand a general filename and use them if they match. You may have heard about “Wildcard Characters” – this is a similar concept.
	Filename Expansion
	Shell Basics
	UNIX shell
	Why command line?
	Command Execution
	Command Line Syntax
	Command Recall & Editing
	Quoting in UNIX
	\ Quote
	‘ - Single Quotes
	" - Double Quotes

